Reconstructing Satellite-Based Monthly Precipitation over Northeast China Using Machine Learning Algorithms

نویسندگان

  • Wenlong Jing
  • Pengyan Zhang
  • Hao Jiang
  • Xiaodan Zhao
چکیده

Attaining accurate precipitation data is critical to understanding land surface processes and global climate change. The development of satellite sensors and remote sensing technology has resulted in multi-source precipitation datasets that provide reliable estimates of precipitation over un-gauged areas. However, gaps exist over high latitude areas due to the limited spatial extent of several satellite-based precipitation products. In this study, we propose an approach for the reconstruction of the Tropical Rainfall Measuring Mission (TRMM) 3B43 monthly precipitation data over Northeast China based on the interaction between precipitation and surface environment. Two machine learning algorithms, support vector machine (SVM) and random forests (RF), are implemented to detect possible relationships between precipitation and normalized difference vegetation index (NDVI), land surface temperature (LST), and digital elevation model (DEM). The relationships between precipitation and geographical location variations based on longitude and latitude are also considered in the reconstruction model. The reconstruction of monthly precipitation in the study area is conducted in two spatial resolutions (25 km and 1 km). The validation is performed using in-situ observations from eight meteorological stations within the study area. The results show that the RF algorithm is robust and not sensitive to the choice of parameters, while the training accuracy of the SVM algorithm has relatively large fluctuations depending on the parameter settings and month. The precipitation data reconstructed with RF show strong correlation with in situ observations at each station and are more accurate than that obtained using the SVM algorithm. In general, the accuracy of the estimated precipitation at 1 km resolution is slightly lower than that of data at 25 km resolution. The estimation errors are positively related to the average precipitation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of Different Machine Learning Approaches for Monthly Satellite-Based Soil Moisture Downscaling over Northeast China

Although numerous satellite-based soil moisture (SM) products can provide spatiotemporally continuous worldwide datasets, they can hardly be employed in characterizing fine-grained regional land surface processes, owing to their coarse spatial resolution. In this study, we proposed a machine-learning-based method to enhance SM spatial accuracy and improve the availability of SM data. Four machi...

متن کامل

A Comparison of Different Regression Algorithms for Downscaling Monthly Satellite-Based Precipitation over North China

Environmental monitoring of Earth from space has provided invaluable information for understanding land–atmosphere water and energy exchanges. However, the use of satellite-based precipitation observations in hydrologic and environmental applications is often limited by their coarse spatial resolutions. In this study, we propose a downscaling approach based on precipitation–land surface charact...

متن کامل

Mapping Fine Spatial Resolution Precipitation from TRMM Precipitation Datasets Using an Ensemble Learning Method and MODIS Optical Products in China

Precipitation data are important for the fields of hydrology and meteorology, and are fundamental for ecosystem monitoring and climate change research. Satellite-based precipitation products are already able to provide high temporal resolution precipitation information at a global level. However, the coarse spatial resolution has restricted their use in regional level studies. In this study, mo...

متن کامل

Spatiotemporal Estimation of PM2.5 Concentration Using Remotely Sensed Data, Machine Learning, and Optimization Algorithms

PM 2.5 (particles <2.5 μm in aerodynamic diameter) can be measured by ground station data in urban areas, but the number of these stations and their geographical coverage is limited. Therefore, these data are not adequate for calculating concentrations of Pm2.5 over a large urban area. This study aims to use Aerosol Optical Depth (AOD) satellite images and meteorological data from 2014 to 2017 ...

متن کامل

Evaluation of remote sensing indicators in drought monitoring using machine learning algorithms (Case study: Marivan city)

Remote sensing indices are used to analyze the Spatio-temporal distribution of drought conditions and to identify the severity of drought. This study, using various drought indices generated from Madis and TRMM satellite data extracted from Google Earth Engine (GEE) platform. Drought conditions in Marivan city from February to November for the years 2001 to 2017 were analyzed based on spatial a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Remote Sensing

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2017